

M. C. E. Society's AbedaInamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to SavitribaiPhule Pune University NAAC accredited 'A' Grade

Title of the Course: B. Sc. (Computer Science)

Objectives:

- To develop problem solving abilities using a computer.
- To build the necessary skill set and analytical abilities for developing computer based solutions for real life problems.
- To train students in professional skills related to the Software Industry.
- To prepare the necessary knowledge base for research and development in Computer Science.
- To help students build-up a successful career in Computer Science and to produce entrepreneurs who can innovate and develop software products.

Outcomes:

- An ability to apply knowledge of computing and mathematics appropriate to the discipline.
- An ability to identify, formulates, and develop solutions to computational challenges.
- An ability to design, implements, and evaluate a computational system to meet desired needs within realistic constraints.
- An ability to function effectively on teams to accomplish shared computing design, evaluation, or implementation goals.
- An understanding of professional, ethical, legal, security, and social issues and responsibilities for the computing profession.
- An ability to communicate and engage effectively with diverse stakeholders.
- An ability to analyze impacts of computing on individuals, organizations, and society.
- Recognition of the need for and ability to engage in continuing professional development.
- An ability to use appropriate techniques, skills, and tools necessary for computing practice.
- An ability to apply mathematical foundations, algorithmic principles, and computer science theory in the modeling and design of computational systems in a way that demonstrates comprehension of the tradeoffs involved in design choices.
- An ability to apply design and development principles in the construction of software systems of varying complexity.

Structure of F.Y.B.Sc(CS)

Semester-I

Total Credit-22

Sr.No	Name of the Course/Paper Title
1	Problem Solving Using Computer and 'C' Programming –I
2	Database Management System
3	PracticalcourseonProblemSolvingusingComputerand 'C'programming
	and DatabaseManagementSystems
4	Mathematics – I, II and III
5	Electronics-I,II and III
6	Statistics – I, II and III

Semester-II

Total Credit-22

Sr.No	Name of the Course/Paper Title
1	Advance 'C' Programming
2	RelationalDatabaseManagementSystems
3	Practical course based on Advance C Programming and RDBMS
4	Mathematics – I, II and III
5	Electronics-I, II and III
6	Statistics – I, II and III

Syllabus for F.Y.B. Sc. (Computer Science) 2021-22 (CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Problem Solving Using Computer and 'C' Programming - I
Course Code	21SBCS111C
Semester	Ι
No. of Credits	2(36 Lectures of 50 minutes)

Aims & Objectives of the Course

Sr.	Objectives
No.	
1.	To introduce the foundations of computing, programming and
	problem- solving using computers.
2.	To develop the ability to analyze a problem and devise an algorithm to
	solve it.
3.	To understand structured programming approaches.
4.	To develop the basic concepts and terminology of programming in
	general.
5.	To implement algorithms in the 'C' language.
6.	To test, debug and execute programs.

Sr.	Learning Outcome
No.	
1.	Explore algorithmic approaches to problem solving.
2.	Develop modular programs using control structures and arrays in 'C'.

Unit	Title with Contents	No. of
No.		Lectures
Unit -I	Problem Solving Aspects	6
	1. Introduction to problem solving using computers.	
	2. Problem solving steps.	
	3. Algorithms-definition, characteristics, examples,	
	advantages and limitations.	
	4. Flowcharts - definition, notations, examples,	
	advantages and limitations, Comparison with	
	algorithms.	
	5. Compilation process(compilers,	
	interpreters), linking and loading, syntax and	
	semantic errors, testing a program	
Unit-II	'C' Fundamentals	9
	1. History of 'C' Language	
	2. Application areas.	
	3. Structure of a 'C' program.	
	4. 'C' Program development life cycle.	
	5. Function as building blocks.	
	6. 'C' tokens	
	7. Character set, Keywords, Identifiers	
	8. Variables, Constants (character, integer,	
	float, string, escape sequences,	
	enumeration constant).	
	9. Data Types (Built-in and user defined data types).	
	10. Operators, Expressions, types of operators, Operator	
	precedence and Order of evaluation.	
	11. Character input and output.	
	12. String input and output.	

	13	. Formatted input and output.	
	14	. Introduction to preprocessor	
Unit-III	Cor	ntrol Structures	7
	1.	Decision making structures:-if, if-else, switch and	
		conditional operator.	
	2.	Loop control structures:-while, do while, for.	
	3.	Use of break and continue.	
	4.	Nested structures.	
	5.	Unconditional branching (goto statement).	
Unit IV	Fur	nctions	7
	1.	Concept of function, Advantages of Modular design.	
	2.	Standard library functions.	
	3.	User defined functions:-declaration, definition,	
		function call, parameter passing (by value), return	
		statement.	
	4.	Recursive functions.	
	5.	Scope of variables and Storage classes.	
Unit V	Arr	ays	7
	1.	Concept of array.	
	2.	Types of Arrays - One, Two and Multi-dimensional	
	3.	Array.	
	4.	Array Operations - declaration, initialization,	
		accessing array elements.	
	5.	Memory representation of two-dimensional array	
		(row major and column major)	
	6.	Passing arrays to function.	
	7.	Array applications	

- 1. How to Solve it by Computer, R.G. Dromey, Pearson Education.
- 2. Problem Solving and Programming Concept, Maureen Sprankle,7th Edition,

Pearson Publication.

- 3. C: the Complete Reference, Schildt Herbert, 4th edition, McGrawHill
- 4. A Structured Programming Approach Using C, Behrouz A. Forouzan, Richard F. Gilberg, Cengage Learning India
- 5. The 'C' programming language, Brian Kernighan, Dennis Ritchie, PHI
- 6. Programming in C , A Practical Approach, Ajay Mittal , Pearson
- 7. Programming with C, B. Gottfried, 3rd edition, Schaum's outline Series, Tata McGraw Hill.
- 8. Programming in ANSI C, E. Balagurusamy, 7thEdition, McGrawHill.

Course/ Paper Title	Database Management Systems
Course Code	21SBCS112C
Semester	I
No. of Credits	2 (36 Lectures of 50 minutes)

Sr.	Objectives		
No.			
1	To understand the fundamental concepts of databases.		
2	To understand user requirements and frame it in a data model.		
3	To understand creations, manipulation and querying of data in databases.		

Expected Course Specific Learning Outcomes

Sr.	Learning Outcome
No.	
1	Solve real world problems using appropriate set, function, and relational models.
2	Design E-R Model for given requirements and convert the same into database tables.
3	Use SQL.

Unit	Title with Contents	No. of
No.		Lectures
Unit I	Introduction to DBMS	4
	1. Introduction	
	2. File system Vs. DBMS	
	3. Data independence	
	4. Structure of DBMS	

	5. Users of DBMS Advantages of DBMS	
Unit II	Conceptual Design	12
	1. Overview of DB design process	
	2. Introduction to data models (E-R model,	
	Relational model, Network model, Hierarchical	
	model)	
	3. Conceptual design using ER data model	
	(entities, attributes, entity sets, relations,	
	relationship sets)	
	4. Constraints (Key constraints, Integrity constraints,	
	referential integrity, unique constraint, Null/Not	
	Null constraint, Check constraint, Mapping	
	constraints)	
	Extended features – Specialization, Aggregation,	
	Generalization	
Unit III	SQL	12
	1. Introduction to query languages	
	2. Basic structure	
	3. SQL Commands	
	4. Basic SQL query with constraints & nested queries	
	5. Aggregate Operators and functions	
	6 SQL mechanisms for joining relations (inner joins,	
	outer joins and their types)	
	7 Views	
Unit IV	Relational Database Design	8
	1. Introduction to Relational-Database Design (
	undesirable properties of a RDB design)	
	2. Functional Dependency(Basic concepts, F+,	

Closure of an Attribute set)

3. Concept of normalization, Normal Forms (1NF,2NF

and 3NF), Examples

4 Keys Concept

- Database System Concepts, Henry F. Korth, Abraham Silberschatz, S.Sudarshan, ISBN:9780071289597, Tata McGraw-Hill Education
- 2. Database Management Systems, Raghu Ramakrishnan, ISBN: 9780071254342, Mcgraw-hill higher Education
- 3. Database Management Systems, Raghu Rama Krishnan and Johannes Gehrke, McGraw-Hill Science/Engineering/Math; 3 edition, ISBN:9780072465631
- 4. Database Systems, Shamkant B. Navathe, Ramez Elmasri, ISBN: 9780132144988, PEARSON HIGHER EDUCATION

Course/ Paper Title	Practical course on Problem Solving using
	Computer and 'C' programming and
	Database Management Systems
Course Code	21SBCS113C
Semester	Ι
No. of Credits	1.5 (46.8 Lectures of 50 minutes)

Sr.	Objectives
No.	
1	To understand the program development life cycle.
2	Solve simple computational problems using modular design and basic
	features of the 'C' language.
3	Understand basic database management operations.
4	Design E-R Model for given requirements and convert the same into
	database tables

Sr.	Learning Outcome
No.	
1	Devise pseudo codes and flowchart for computational problems.
2	Write, debug and execute simple programs in 'C'.
3	Create database tables in postgreSQL.

Unit	Title with Contents	No. of
No.		Session
Unit I	Problem Solving Using Computer and 'C'	06
	Programming - I	
	Assignment 1.	
	Problem Solving using Pseudo code and Flowchart,	
	Simple programs, Understanding errors and error	
	handling.	
	Assignment 2.	
	Decision Making Control Structures.	
	Assignment 3.	
	Loop Control Structures	
	Assignment 4.	
	Functions (User Defined functions, Library	
	functions and Recursion).	
	Assignment 5.	
	Arrays (1-D and 2-D).	
Unit II	Database Management Systems	06
	Assignment 1.	
	To create simple tables with only the primary	
	key constraint (as a table level	
	constraint & as a field level constraint)	
	(include all data types)	
	Assignment 2.	
	To create more than one table, with	
	referential integrity constraint, PK constraint.	
	Assignment 3.	
	To create one or more tables with following	

constraint	s, in addition to the first two	
constraint	s (PK & FK)	
a.	Check constraint	
b.	Unique constraint	
с.	Not null constraint	
Assignment 4.		
To drop a	table, alter schema of a table,	
insert / up	date / delete records using tables	
created in	previous Assignments. (use	
simple for	rms of insert / update / delete	
statement	s)	
Assignment 5.		
To query	the tables using simple form of	
select stat	ement Select <field-list> from</field-list>	
table [who	ere <condition> order by <field< td=""><td></td></field<></condition>	
list>] Sele	ect <field-list, aggregate="" functions<="" td=""><td></td></field-list,>	
> from tal	ble [where <condition> group by <></condition>	
having <>	> order by <>]	
Assignment 6.		
To query	table, using set operations (union,	
intersect)		
Assignment 7.		
To query	tables using nested queries (use of	
'Except',	exists, not exists, all clauses	
Assignment 8.		
To create views.		

Operating Environment:

Sr.No	Operating Environment
1	For 'C' Programming :
	Operating system: Linux
	Editor: Any Linux based
	editor like vi, gedit etc.
	Compiler : cc or gcc
2	For DBMS:
	Operating System: Linux
	Operating system DBMS:
	PostgreSQL
	Language: SQL

Course/ Paper Title	Advanced 'C' Programming
Course Code	21SBCS121C
Semester	П
No. of Credits	2(36 lectures of 50 minutes)

Sr.	Objectives
No.	
1.	To study advanced concepts of programming using the 'C' language.
2.	To understand code organization with complex data types and structures.
3.	To work with files.

Sr.	Learning Outcome
No.	
1.	Develop modular programs using control structures, pointers, arrays,
	strings and structures
2.	Design and develop solutions to real world problems using C.

Unit No.	Title with Contents	No. of Lectures
Unit I	Pointers	10
	1. Introduction to Pointers.	
	2. Declaration, definition, initialization, dereferencing.	
	3. Pointer arithmetic.	
	4. Relationship between Arrays & Pointers- Pointer to	
	array, Array of pointers.	
	5. Multiple indirections (pointer to	
	pointer). Functions and pointers- Passing	
	pointer to function, returning pointer from	
	function, function pointer.	
	6. Dynamic memory management-	
	Allocation(malloc(),	
	calloc()),Resizing(realloc()),	
	Releasing(free()).,	
	7. Memory leak, dangling pointers.	
	8. Types of pointers.	
Unit II	Strings	9
	1. String Literals, string variables,	
	declaration, definition, initialization.	
	2. Syntax and use of predefined string	
	functions	
	3. Array of strings. Strings and Pointers	
	4. Command line arguments.	
Unit III	Structures And Unions.	10
	1. Concept of structure, definition and	
	initialization, use of typedef.	
	2. Accessing structure members.	
	3. Nested Structures	

	4.	Arrays of Structures	
	5.	Structures and functions- Passing each	
		member of structure as a separate	
		argument, passing structure by value	
		/address. Pointers and structures.	
	6.	Concept of Union, declaration, definition,	
		accessing union members.	
		5100	
	7.	Difference between structures and union	
Unit IV	7. File Handling	Difference between structures and union	7
Unit IV	7. File Handling 1.	Difference between structures and union g Introduction to streams.	7
Unit IV	7. File Handling 1. 2.	Difference between structures and union g Introduction to streams. Types of files .Operations on text files.	7
Unit IV	7. File Handling 1. 2. 3.	Difference between structures and union Introduction to streams. Types of files .Operations on text files. Standard library input/output functions.	7
Unit IV	7. File Handling 1. 2. 3. 4.	Difference between structures and union g Introduction to streams. Types of files .Operations on text files. Standard library input/output functions. Random access to files.	7

- 1. C: the Complete Reference, Schildt Herbert, 4th edition, McGrawHill
- A Structured Programming Approach Using C, Behrouz A. Forouzan, Richard F. Gilberg, Cengage Learning India
- 3. The 'C' programming language, Brian Kernighan, Dennis Ritchie, PHI
- 4. Programming in C , A Practical Approach, Ajay Mittal , Pearson
- Programming with C, B. Gottfried, 3rd edition, Schaum's outline Series, Tata McGraw Hill.
- 6. Programming in ANSI C, E. Balagurusamy, 7thEdition, McGrawHill.

Course/ Paper Title	Relational Database Management Systems
Course Code	21SBCS122C
Semester	П
No. of Credits	2(36 Lectures of 50 minutes)

Sr. No.	Objectives
1.	To teach fundamental concepts of RDBMS(PL/ PgSQL)
2.	To teach database management operations
3.	Be familiar with the basic issues of transaction processing and concurrency control
4.	To teach data security and its importance

Expected Course Specific Learning Outcome

Sr. No.	Learning Outcome
1.	To design E-R Model for given requirements and convert the same
	into database tables.
2.	To use database techniques such as SQL & PL/SQL.
3.	To explain transaction Management in relational database System.

Unit No	Title with Contents	No. of Lectures
Unit I	Relational Database Design Using PLSQL	10
	1. Introduction to PLSQL	
	2. Stored Procedures	
	3. Stored Functions	
	4. Handling Errors and Exceptions	
	5. Cursors	
	6. Triggers	
Unit II	Transaction Concepts and concurrency control	12

	1. Introduction and basic concepts of transaction	
	2. Schedules & concept of Serializability	
	3. Serializability by lock mechanism	
	4. Basic timestamp method & Thomas Write Rule.	
	5. Locks with multiple granularity, dynamic database	
	concurrency (Phantom Problem), Timestamp V/s	
	Locking	
	6. Deadlock	
Unit III	Database Integrity and Security Concepts	6
	1. Domain constraints & Referential Integrity	
	2. Methods for database security	
	i. Discretionary access control method	
	ii. Mandatory access control	
	iii. Role base access control for multilevel security.	
	3. Use of views in security enforcement.	
	4. Encryption technique for security.	
	Statistical database security.	
Unit IV	Crash Recovery	5
	1. Failure classification	
	2. Recovery concepts	
	3. Log base recovery techniques (Deferred and Immediate	
	update)	
	4. Checkpoints, Relationship between database	
	manager and buffer cache.	
	5. Recovery with concurrent transactions (Rollback,	
	checkpoints, commit)	
	6. Database backup and recovery from catastrophic failure	
Unit V	Other Databases	3
	1. Introduction to Parallel and distributed Databases	
	2. Introduction to Object Based Databases	

- 1. Database System Concepts, By Silberschatz A., Korth H., Sudarshan S., 6th Edition, McGraw Hill Education
- 2. Database Management Systems, Raghu Ramakrishnan, Mcgraw-Hill Education
- 3. Database Systems, Shamkant B. Navathe, RamezElmasri, PEARSON HIGHER EDUCATION
- 4. Fundamentals of Database Systems, By: Elmasri and Navathe, 4th Edition Practical PostgreSQL O'REILLY
- 5. Database Management Systems, RaghuRamakrishnan and JohannesGehrke, McGraw-Hill Science/Engineering/Math; 3 edition, ISBN: 9780072465631
- 6. NoSQL Distilled, Pramod J. Sadalage and Martin Fowler, Addison Wesley
- 7. An Introduction to Database Systems", C J Date, Addison-Wesley
- 8. Database Systems : Concepts, Design and Application", S.K.Singh, Pearson, Education
- 9. NoSQL Distilled A Brief Guide to the Emerging World of Polyglot Persistence
 : by Pramod J. Sadalage, Martin Fowler, Addison-Wesley, Pearson Education, Inc.
- 10. MongoDB: The Definitive Guide , Kristina Chodorow, Michael Dirolf, O'Reilly Publications

Course/ Paper Title	Practical course based on Advance C Programming and
	RDBMS
	CS122C
Course Code	21SBCS123C
Semester	2
No. of Credits	1.5 (46.8 Lectures of 50 minutes)

Sr.	Objectives
No.	
1	To solve real world computational problems.
2	To perform operations on relational database management systems.
3	To write, debug and execute programs using advanced features in 'C'.
4	To use SQL & PL/SQL.
5	To perform advanced database operations.

Sr.	Learning Outcome
No.	
1	Devise pseudo codes and flowchart for computational problems.
2	Write, debug and execute simple programs in 'C'.
3	Create database tables in postgreSQL.

Unit	Title with Contents	No. of
No.		Session
Unit I	Advanced C Programming	06
	A	
	Assignment 1.	
	Simple Formers.	
	a) Pointer initialization and use	
	of pointers.	
	b) Pointer Arithmetic.	
	Assignment 2.	
	Dynamic Memory Allocation.	
	Assignment 3.	
	String handling using standard library	
	functions.	
	Assignment 4.	
	Structure and Unions.	
	Assignment 5.	
	File Handling.	
	Assignment 6.	
	C Preprocessors.	
Unit II	Relational Database Management Systems	06
	Suggested List of Assignments:	
	Assignment 1. Stored Procedure	
	1) A Simple Stored Procedure	
	2) A Stored Procedure with IN, OUT and	
	IN/OUT parameter	
	Assignment 2: Stored Function	

1)	A Simple Stored Function	
2)	A Stored Function that returns	
3)	A Stored Function recursive	
Assignment 3	: Cursors	
1)	A Simple Cursor	
2)	A Parameterized Cursor	
Assignment 4	: Exception Handling	
1)	Simple Exception- Raise Debug Level	
	Messages	
2)	Simple Exception- Raise Notice Level	
	Messages	
3)	Simple Exception- Raise Exception Level	
	Messages	
Assignment 5	: Triggers	
1)	Before Triggers (insert, update, delete)	
After Triggers	(insert, update, delete)	

Operating Environment

Sr.No	Operating Environment
1	For Advanced 'C' Programming :
	Operating system: Linux
	Editor: Any Linux based
	editor like vi, gedit etc.
	Compiler : cc or gcc
2	For RDBMS:
	Operating System: Linux
	Operating system DBMS:
	PostgreSQL
	Language: SQL